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Abstract: This study evaluates the impact of number of parameters on the probability distribution. 
In this study, we have added one, two and three parameters in a single parameter exponential 
distribution and study the validation and precision of the probability models due to the added 
parameters. The primary objective of this research is to know about the impact of higher number 
of parameters on validation and precision of the probability models. We have generated a sample 
dataset of size hundred from two parameter exponential distribution newly formulated by adding a 
shape parameter to classical exponential distribution. For all models defined in this study, probability 
density curves and hazard rate curves are plotted and found that the models having more parameters 
are more flexible and valid compared to models having a smaller number of parameters. Plotting 
P-P and Q-Q plots is used to validate the models and estimate their parameters using the maximum 
likelihood function. Models with higher parameters have better validity, as seen by P-P and Q-Q 
plots. Calculations are made to determine the Akaike, Bayesian, Corrected Akaike, and Hannan-
Quinn information criteria for model selection. Information criteria show that the model with larger 
number of parameters is more valid and flexible. To test the goodness of fit, Anderson darling test, 
Kolmogrov Smirnov test, and Cramer-von Mises methods are used. The R programming language is 
used to carry out all of the graphical and mathematical computations.
Keywords: Exponential distribution, Parameters Probability distribution, Model formulation, 
Validation, Maximum likelihood estimation

Introduction
Probability distributions are fundamental concepts in statistics and probability 
theory providing a mathematical framework for describing the likelihood of different 
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outcomes in various scenarios. Probability distributions form the basis for statistical 
inference, modeling of random variables, and understanding the variability inherent 
in data. In other words, probability distributions provide a powerful framework for 
understanding and quantifying uncertainty in data. By characterizing the probabilities 
of possible outcomes, they facilitate statistical analysis, modeling, and inference across 
various disciplines, contributing to informed decision-making and robust scientific 
exploration. A probability model specifies the probabilities of the possible outcomes of 
a random variable. It describes how the total probability distributed among the possible 
values of the random variable. Many distributions are characterized by one or more 
parameters that determine their shape, location, and scale. For example, the parameters 
of Normal distribution are mean and standard deviations. Probability distributions 
are essential for making inferences about populations based on sample data, such as 
estimating parameters and testing hypotheses. They are used to model real-world 
phenomena and simulate outcomes in fields such as finance, engineering, and natural 
sciences. Probability models may have single more than one parameter.

Single parameter distributions are probability distributions that are characterized by 
a single parameter, which determines their shape, location, or scale. These distributions 
are foundational in statistics and probability theory, providing simple models for various 
types of random variables. Bernoulli distribution, Poisson distribution, Exponential 
Distribution, Geometric Distribution, and Uniform Distribution are some single 
parameter probability distributions. 

Multi-parameter probability distributions are distributions that are characterized 
by more than one parameter. These distributions are used when a single parameter 
is insufficient to fully describe the variability or characteristics of a random variable. 
Normal Distribution, Beta Distribution, Dirichlet Distribution, gamma distribution, 
multinomial distributions are some commonly used multivariate probability 
distributions. Multi-parameter probability distributions are essential in statistical 
modeling and analysis, providing flexibility to describe complex data patterns and 
relationships. They are widely used across various disciplines, including engineering, 
economics, biology, and social sciences, for modeling real-world phenomena and 
making informed decisions under uncertainty. Understanding and correctly applying 
these distributions are crucial for conducting rigorous statistical inference and building 
reliable predictive models. Handling distributions with more parameters presents 
both theoretical and practical challenges in statistical modeling and analysis. While 
distributions with more parameters offer increased flexibility and potential for modeling 
complex data patterns, they also pose significant theoretical and practical challenges. 
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Addressing these challenges requires careful consideration of model complexity, data 
quality, computational resources, and effective communication of results to ensure 
robust and reliable statistical inference.

In literature, we can find numerous custom probability models having two or more 
than two parameters. These models are formulated using the classical probabilities 
models. The Classical probabilities models available in theory have more potential and 
are very useful in probability analysis. There are different types of classical probability 
models capturing the overall field and types of data available. In spite of various 
potentialities in classical probability models, there are some situations where these 
models could not analyze data precisely and the custom probability model formulated 
fits the data very well. Custom probability models have different shaped probability 
density function and hazard rate function that make it more flexible to fit for different 
new datasets.

Some of the newly generated probability distributions are, Exponentiated half 
logistic (Almarashi et al., 2018), Exponentiated Chen distribution (Dey et al., 2017), 
Lomax exponential distribution (Ijaz & Asim, 2019), Marshall-Olkin logistic-exponential 
distribution (Mansoor et al., 2019), Generalized inverted generalized exponential 
distribution (Oguntunde & Adejumo, 2015), and Marshall-Olkin Kumaraswamy 
(Roshini and Thobias, 2017) etc. Some other modified classical probability distributions 
are logistic NHE distribution by (Chaudhary & Kumar,2020), Kumaraswamy alpha 
power inverted exponential distribution by (Thomas et al., 2019) etc. Furthermore, 
Chaudhary et al. (2024) introduced Arctan exponential extension distribution, and 
new four-parameter extended exponential distribution created by (Hassan et al. ,2022). 
Chaudhary et al. (2024) also analyzed the air quality of Kathmandu using a probability 
model named the New Extended Kumaraswamy.

In literature, we can find many modifications of exponential distribution to generate 
new probability model. These modifications are done by adding some extra parameters, 
by merging two probability models, or by using family of probability distributions etc. 
Main objective behind the formulation of new models is to generate more flexible, 
valid and more reliable probability model that will cover wide range of data found in 
modern environment. Some of the generated probability distributions are; Generalized 
exponential proposed by (Gupta & Kundu, 2007), two-sided generalized exponential 
distribution was generated by (Korkmaz et al.,2015) etc. Similarly, Telee and Kumar 
(2023) introduced modified generalized exponential distribution. Other generalizations 
of exponential distribution are: beta exponential (Nadarajah & Kotz, 2006), Cauchy 
modified generalized exponential distribution (Chaudhary et al., 2024) etc. Cordeiro 
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and de Castro (2011) introduced Kumaraswamy exponential distribution. Merovci 
(2013) gave “Transmuted exponentiated exponential distribution”, beta generalized 
exponential given by (Barreto Souza et al., 2010), exponentiated exponential geometric 
by (Louzada et al., 2014) are some models generated using exponential distribution. 
The gamma exponentiated exponential generated by (Ristic & Balakrishnan, 2011) as 
well as Kumaraswamy transmuted G-family of distribution was introduced by (Afify et 
al.,2016) are also generalization of exponential distribution. Generalized exponential 
distribution (Gupta & Kundu, 1999a), generalized Gompertz-Verhut family of 
distributions (Ahuja and Nash, 1967) and Lindley–exponential distribution (Bhati et 
al., 2015) etc. are the modified distributions of exponential distributions.

Model Formulation
In this study, we have added one, two, or three shape as well as scale parameters to 
the classical exponential distribution to get modified exponential distribution having 
multi parameters probability distributions. A Poisson process, in which events happen 
continuously, independently, and at a constant average rate, describes the intervals 
between events. With a rate parameter λ > 0, the probability density function (PDF) of 
an exponential distribution is

 ( , ) ; 0, 0xf x e xλλ λ λ−= > >  (1)
The exponential distribution’s corresponding probability distribution function (or 

CDF) is

 ( , ) 1 ; 0, 0xF x e xλλ λ−= − > >  (2)
One of the unique properties of the exponential distribution is that it is memory 

less. This means, time has already elapsed do not affect that the probability of an event 
occurring in the next interval of. Parameter λ controls the shape of the distribution. 
Higher λ means events occur more frequently, leading to shorter times between 
events. The reciprocal 1/λ gives the average time between events. The hazard rate of the 
exponential distribution is constant λ as given in eq. (3).

 ( ) a constanth x λ= =  (3)
Similarly, the quantile function of the exponential distribution is given in eq. (4),

  QX(u) = FX
–1(u)

 
( ) ( )1 log 1 ;    0 1

       

xQ u u u
λ

 = − − ≤ ≤ 
   

(4) 
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The pdf plots in Figure 1(a) are displayed for various parameter values. Figure 1(b) 
also displays the hazard rate function of the exponential distribution. It is seen that 
there is less flexibility in pdf curves. The pdf curves are decreasing in shape while the 
hazard rate curve is constant. 

During study, at first modification of Exponential distribution is done by adding 
a scale parameter β and is named as MEXP for simplicity. Equations (5) and (6), 
respectively, provide the pdf and cdf of the MEXP.

  ( ) ( ) ( ), , 1 ; 0, , 0
xxe xf x e e x x

βλ ββ λ λ β λ β−= + > >  (5)

 ( )( , , ) 1 ; 0, , 0
xxeF x e x
βλβ λ λ β−= − > >  (6)

Hazard rate function h(x) of MEXP is in eq. (7).

 ( ) ( )( ) 1 ; 0, , 0xh x e x xβλ β λ β= + > >  (7)
Quantile function of MEXP is given by eq. (8)

 ( )( ) log 1 0; 0 1x
xQ u xe u uλλ= + − = ≤ ≤  (8)

The pdf plots in figure 1(c) are displayed for various parameter values. Figure 1(d) 
also displays the hazard rate function of MEXP distribution. It is seen that there is a little 
more flexibility in pdf curve by adding a scale parameter. The pdf curve is decreasing 
as well as positively skewed in shape while the hazard rate curves are increasing and j 
shaped.

In next step, MEXP defined in eq. (5) is again modified by adding another shape 
parameter α. The new model formed has three parameters, α, β, and λ. The model so 
formed is named as Modified exponentiated exponential (MEEXP) model with pdf and 
cdf given by eq. (9) and (10) respectively.

 ( ) ( )1( , , , ) ; 0, , , 0
xx x ef x e e x x x

α ββ λ α αα β λ λ α α λ β− −= + > >  (9)

 ( )( , , , ) 1 ; 0, , , 0
xx eF x e x

α βλα β λ α λ β−= − > >  (10)
The MEEXP’s Hazard Rate Function h(x) is provided by Equation (11). 

 ( ) ( )1( ) ; 0, , , 0xh x e x x xβ α αλ α α λ β−= + > >  (11)
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Similarly, the quantile function of MEEXP is given by eq. (8)

 ( )( ) log 1 0; 0 1x
xQ u x e u uα λλ= + − = ≤ ≤  (12)

The pdf plots in figure 1(e) are displayed for various parameter values. Hazard rate 
function of MEEXP is shown in figure 1(f). It is seen that there is more flexibility in pdf 
curves which is obtained as another parameter α is added to distribution MEXP. The 
pdf curve of MEEXP is decreasing as well as positively skewed, approximately normal 
as well as negatively skewed in shape while the hazard rate curves are bathtub, inverted 
j and j shaped.

MEEXP defined in eq. (9) is again modified by adding another shape parameter θ. 
The new model formed has four parameters, α, β, λ and θ. The model formed is named 
as Theta power modified exponentiated exponential (TMEE) distribution with pdf and 
cdf given by eq. (13) and (14) respectively.

  

( ) ( )

( , , , , ) 1

                                     ; , , , 0, 0

x xx x e x ef x e e e

x x x

α β α ββ λ λ

α α

α β λ θ λθ

α α λ β θ

− − = − 
 

+ > >

 (13)

 ( )( , , , , ) 1 ; 0, , , , 0
xx eF x e x

α β θ
λα β λ θ α β λ θ− = − > > 

 
 (14)

Hazard rate function h(x) of TMEE is given by eq. (11).

( ) ( )

11

1

( ) ( , , , , ) 1 1 1

                                     ; 0, , , , 0

x x xx x e x e x eh x f x e e e e

x x x

α β α β α βθ θ
β λ λ λ

α α

α β λ θ λθ

α α λ β θ

−−
− − −

−

    = = − − −    
     

+ > >

(15)
Similarly, the quantile function of MEEXP is given by eq. (16).

 ( )1/( ) log 1 0; 0 1x
xQ u x e u uα λ θλ= + − = ≤ ≤  (16)

The pdf graphs in figure 1(g) are displayed for various parameter values. Similarly, 
figure 1(h) displays the hazard rate function of the TMEE. It is seen that there is more 
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flexibility in pdf curves due to addition of extra parameter θ than above three models. The 
pdf curve is decreasing as well as positively skewed, approximately normal and negatively 
skewed in shape while the hazard rate curves are bathtub, inverted j and j shaped.

Figure 1: Pdf curves and hrf curves for all four models
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Application to a Dataset
To test and compare the applicability of the models defined, we have generated a sample 
of 100 units from another modified exponential distribution. All the computational 
analysis are performed using R language (R Core Team, 2023). Here, we have modified 
the exponential distribution by taking the exponent of the classical exponential 
distribution defined in eq (1). The model defined has the following density and 
distribution functions.

 
( ) ( )

1
( , , ) 1 ; 0, , 0; 0, 0x xf x e e x x

αλ λα λ αλ α λ λ
−− −= − > > > >   (17)

 ( )( ; , ) 1 ; 0,  0 and 0xF x e x
αλα λ α λ−= − > > >  (18)

Random deviate generation of the above model defined in eq (18) is given as

 
1/log(1 ) ;    0 p 1px
α

λ
− = − ≤ ≤ 

 
  (19)

Using random deviate generation (19), a dataset of sample size 100 is generated 
taking α = 1.5 and λ= 0.5. The generated data are:

0.8149279, 0.7081576, 1.3721750, 0.2379471, 1.1692240, 1.2047875, 2.2375001, 
0.9494139, 1.3575748, 0.5184395, 1.5670379, 2.6348508, 0.7565078, 1.0110477, 
2.0221787, 1.6973791, 0.5940405, 0.9216821, 0.9258996, 1.7646891, 1.3306340, 
1.8328188, 1.3369625, 1.9696944, 1.0590074, 0.5210229, 2.0531757, 2.6333746, 
1.3639906, 0.7509051, 1.2154829, 3.0307538, 0.9026194, 3.3622235, 1.7809339, 
2.6870363, 0.5409776, 1.5795679, 4.3667235, 0.4271675, 0.8638752, 2.5226751, 
2.0830483, 2.3106765, 1.5066093, 1.2224080, 2.0946270, 2.6493287, 0.6007807, 
0.8134766, 0.863595, 0.5811135, 0.6611388, 0.7448609, 1.4740500, 0.6990151, 
0.4111236, 0.6487080, 1.4909380, 0.6087946, 1.1579994, 1.6310980, 3.4709733, 
1.7203680, 1.1154669, 0.9222203, 1.1396491, 1.1160721, 0.6812751, 1.7779095, 
1.0414815, 0.8575879, 1.4243491, 3.5971605, 1.6751528, 1.5661895, 2.4712999, 
2.0714519, 2.3453791, 0.3327480, 1.1483694, 1.4958914, 2.9413479, 4.0427173, 
0.1811041, 1.4384458, 1.9117822, 0.6890818, 0.7999356, 1.9123339, 2.8254542, 
0.6053439, 0.9230077, 1.1226455, 2.8209644, 0.9911505, 1.2854314, 0.4152735, 
0.1553307, 2.0592835.
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Summary statistics of the generated data set are mentioned in table 1. Generated 
data is skewed as well as not normal.

Table 1: Summary statistics of generated data

Min. 1st Qu Median Mean 3rd Qu Max. Skewness Kurtosis

0.1553 0.8101 1.2539 1.4594 1.9267 4.3667 1.028578 1.028578

Data Analysis
In this subsection, we have presented MLE method for the parameter estimation. 
Parameters of the entire proposed probability distributions are estimated. Estimated 
parameters and their respective standard errors of estimates (SE) are tabulated in 
table 2. 

Table 2: Estimated Parameters and Standard Errors (SE)

Model α β λ θ

EXP - - 0.6852(0.0685) -

MEXP - 0.3560 (0.0701) 0.3176(0.0612) -

MEEXP 1.7673(0.3120) 0.0021(0.1673) 0.4132(0.0957) -

TMEE 0.6004(0.5358) 0.1184(0.1145) 1.6634(1.0966) 6.2427(9.2634)

Figure 2 shows the P-P and Q-Q plots for each of the four distributions. Figures 2(a) 
and 2(b) are the plots for exponential model. Plots shows that exponential distribution 
do not fit better to the given set of data. Figure 2(c) and 2(d) are the P-P and Q-Q 
plots for MEXP showing that the model fits a little bit better compared to exponential 
distribution for given data set. Similarly, figure 2(e) and 2(f) are the P-P and Q-Q plots 
for MEEXP model. The plots indicate that model fits given data set better compared 
to exponential model as well as MEXP. In figure 2(g) and 2(h), P-P and Q-Q plots for 
TMEE model are displayed. Plots shows that given data set fit the model far better 
compared to other three models. 

To test the suitability and validity of the models, we have compared the log-
likelihoods, BIC, CAIC, AIC and HQIC for each model and are mentioned in table 3. It 
is found that information criteria values decrease as the number of parameters increases 
for this particular dataset. This indicates that as number of parameters increases, the 
accuracy of the model increases.
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Figure 2: P-P plots and Q-Q plots for all four models
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Table 3: Information criteria values for models

Model LL AIC BIC CAIC HQIC
EXP -137.8040 277.608 280.213 277.649 278.662

MEXP -122.8215 249.643 254.853 249.767 251.752
MEEXP -116.5312 239.062 246.878 239.312 242.225
TMEE -115.0740 238.148 248.569 238.569 242.365

Kolmogorov- Smirnov (KS), Cramer’s-von Mises (CVM) and Anderson Darling 
(AD) test statistics are compared. Test statistics and respective p values are in table 5. 
Goodness of fit test shows that as number of parameters increases from one to four, the 
test statistics values decrease with increment of p- values. This indicates that as number 
of parameters increases, model fits better for data set considered here.

Table 5: KS, CVM, and AD statistics and respective p values

Model KS (p-value) CVM (p-value) AD (p-value)
EXP 0.228975(0.00006) 1.41322(0.00025) 7.79894(0.00015)

MEXP 0.109665(0.18036) 0.21352(0.24291) 1.57242(0.16015)
MEEXP 0.053859(0.93380) 0.05990(0.81572) 0.39700(0.85139)
TMEE 0.037329(0.99904) 0.01562(0.99952) 0.12476(0.99972)

Goodness of fits are also displayed graphically in figure 3. The histogram of given 
dataset and the fitted pdfs for all the four models are plotted in left panel of figure 3. 
It is clear from graph that the model with higher number of parameters fits the data 
well compared to the distribution with lesser number of parameters. Similarly, in right 
panel of the figure 3, we have plotted the empirical cdf against the fitted cdfs for all the 
models.

Figure 3: Histogram versus fitted density curves (Left) and Empirical cdf versus fitted cdfs
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Conclusion
This article is based on the analysis of affect of number of parameters on the model 
validation and goodness of fit. We have considered here a single parameter exponential 
distribution and formed another three probability models adding one, two, or three 
parameters. A dataset is generated from another newly modified probability model and 
the information criteria values are calculated for all the models. Information criteria 
values show that as the number of parameters increases, its values decrease showing 
that addition of some extra scale and shape parameters make distribution more flexible 
and valid. Using maximum likelihood estimation, model parameters are estimated. Pdf 
plots and hazard rate curves also show that there is more flexibility in nature of curves 
as the number of parameters increases from one to four. The P-P and Q-Q plots of 
the models also verify that distribution with higher number of parameters fits data set 
well. Goodness of fit are checked using KS, CVM and AD test. Respective p-values as 
well as the test statistics show that as number of parameters increases from one to four, 
precision and validation of the model increases. All the graphics and the computational 
studies are performed using R programming. 
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